Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3 chm 地址 kindle 阿里云 下载 umd pdf

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")
Exercises based on data analyses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proportions
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standardizing to What Standard?
2.3.5 Cautions with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projections and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operations
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Mapmaking
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendations
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.6.4 Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functions
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
6.4 Comparing Point Process Summaries
6.4.1 Goals
6.4.2 Assumptions and Typical Output
6.4.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
6.4.4 Method: Difference between K Functions
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumptions and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proportions
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumptions and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumptions
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumptions and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumptions and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumptions and Typical Output
7.6.3 Method: Pearson’s χ2
7.6.4 Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related Considerations
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relationship to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observations: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressions
9.3.4 Concluding Remarks on Spatial Autoregressions
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional Considerations in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
网站评分
书籍多样性:6分
书籍信息完全性:5分
网站更新速度:3分
使用便利性:9分
书籍清晰度:6分
书籍格式兼容性:5分
是否包含广告:8分
加载速度:8分
安全性:3分
稳定性:9分
搜索功能:6分
下载便捷性:7分
下载点评
- 经典(656+)
- 少量广告(186+)
- 盗版少(336+)
- 三星好评(526+)
- 无缺页(526+)
- 简单(415+)
- 无多页(398+)
- 方便(277+)
- 章节完整(398+)
下载评价
- 网友 堵***格:
OK,还可以
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 冯***丽:
卡的不行啊
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 曾***文:
五星好评哦
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 温***欣:
可以可以可以
- 网友 居***南:
请问,能在线转换格式吗?
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 瞿***香:
非常好就是加载有点儿慢。
- 网友 步***青:
。。。。。好
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
全新正版图书 犯罪研究综述与评价熊海燕知识产权出版社有限责任公司9787513047180 刑事犯罪研究中国人天图书专营店 azw3 chm 地址 kindle 阿里云 下载 umd pdf
菜市场的营养学2:小学生营养事典(全彩) azw3 chm 地址 kindle 阿里云 下载 umd pdf
声律启蒙笠翁对韵诵读本 拼音+注释+配套音频 中华优秀传统文化诵读本“中华很好传统文化经典诵读”系列之一 中华书局 azw3 chm 地址 kindle 阿里云 下载 umd pdf
数据库系统工程师考试全程指导 azw3 chm 地址 kindle 阿里云 下载 umd pdf
天意从来高难问:晚年季羡林 卞毓方 著 中国文联出版社,【正版可开发票】 azw3 chm 地址 kindle 阿里云 下载 umd pdf
精装硬壳绘本 对不起妈妈 小贝拉快乐成长系列3-6岁幼儿园绘本儿童硬皮绘本 正版【盛世好书】 azw3 chm 地址 kindle 阿里云 下载 umd pdf
线路检测与测量 azw3 chm 地址 kindle 阿里云 下载 umd pdf
实验班提优训练寒假衔接版 三年级语文 人教版RMJY 寒假作业练习题册复习预习 2024年春 azw3 chm 地址 kindle 阿里云 下载 umd pdf
复旦大学附属华山医院脑血管病外科疾病病例精解 azw3 chm 地址 kindle 阿里云 下载 umd pdf
法律硕士联考专业基础课 经典案例分析 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 雅思阅读官方题库 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- The Little Science Encyclopedia 科学小百科 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 西安特色小吃向导 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 经典中国:新疆 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 毕淑敏精选集 世纪文学60家 【正版】 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 非洲对外政策与外交:从远古到21世纪9787513908641兴海图书专营店 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 机械领域专利申请文件的撰写与审查(第4版) azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 妈妈孕期瑜伽( 货号:755131544) azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 9787510126048 azw3 chm 地址 kindle 阿里云 下载 umd pdf
- 儿童教育哲学 第三版 刘晓东 儿童观 教育观 儿童身体与儿童体育 儿童哲学教育 儿童科学教育 语言教育 江苏凤凰教育出版JYS azw3 chm 地址 kindle 阿里云 下载 umd pdf
书籍真实打分
故事情节:5分
人物塑造:6分
主题深度:3分
文字风格:3分
语言运用:8分
文笔流畅:4分
思想传递:5分
知识深度:9分
知识广度:9分
实用性:7分
章节划分:7分
结构布局:3分
新颖与独特:5分
情感共鸣:3分
引人入胜:4分
现实相关:7分
沉浸感:9分
事实准确性:4分
文化贡献:3分